Gas-Phase Room-Temperature Detection of the tert-Butyl Hydroperoxide Dimer

Casper Vindahl Jensen and Henrik G. Kjaergaard*

ABSTRACT: We have detected the tert-butyl hydroperoxide dimer, (tert-BuOOH)$_2$, in the gas phase at room temperature using conventional FTIR techniques. The dimer is identified by an asymmetric absorbance band assigned to the fundamental hydrogen-bound OH-stretch. The weighted band maximum of the dimer OH-stretch is located at ∼3452 cm$^{-1}$, red-shifted by ∼145 cm$^{-1}$ from the monomer OH-stretching band. The gas-phase dimer assignment is supported by Ar matrix isolation FTIR experiments at 12 K and experiments with a partially deuterated sample. Computationally, we find the lowest energy structure of (tert-BuOOH)$_2$ to be a doubly hydrogen bound six-membered ring with non-optimal hydrogen bond angles. We estimate the gas-phase constant of dimer formation, K, to be 0.4 (standard pressure of 1 bar) using the experimental integrated absorbance and a theoretically determined oscillator strength of the OH-stretching band.

INTRODUCTION

Hydrogen bonds are of general interest and the formation of hydrogen bound complexes are important in a myriad of chemical systems. These range from particle formation and aerosol growth in the atmosphere to biological processes where hydrogen bond complexes are important in a myriad of biological systems. Hydrogen bonds are of general interest and the formation of hydrogen bond complexes with a single hydrogen bond are usually energetically disfavored compared to the monomers at room temperature due to the small binding enthalpies and low entropy of the complexes. These complexes include HOMs capable of acting as hydrogen bond donors and/or acceptors. These HOMs include functionalities such as alcohols, hydroperoxides, organic acids, ethers, carboxyls, etc. Hydrogen bonds play a crucial role in the formation of the initial bimolecular complexes that grow to form larger clusters, which ultimately condense into aerosols and particles in the atmosphere. Formation of bimolecular complexes with a single hydrogen bond are usually energetically disfavored compared to the monomers at room temperature due to the small binding enthalpies and low entropy of the complexes. This results in relatively small unitless formation constants (standard pressure of 1 bar), typically $K < 1$. In contrast, carboxylic acids form doubly hydrogen bound dimers with geometries that allow for optimal hydrogen bonding angles of ca. 180° in a planar eight-membered ring. Carboxylic acids therefore have significantly larger constants of dimer formation of $K > 100$. Previously, it has been shown that the organic hydroperoxide, tert-butyl hydroperoxide (t-BuOOH) forms stronger hydrogen bonds, compared to the corresponding alcohol tert-butanol (t-BuOH). In the complexes with di-methyl ether (DME) as acceptor (O-atom), the observed room temperature gas phase OH-stretching redshift increased from ∼100 cm$^{-1}$ for the t-BuOOH:DME complex to ∼170 cm$^{-1}$ for the t-BuOOH:DME complex, and K was found to be 5.5 times higher for the t-BuOOH:DME complex. Bimolecular complexes consisting of two hydroperoxide units have been detected in cold matrix isolation experiments and ab initio calculations have suggested a doubly hydrogen-bound structure. These complexes include H$_2$O$_2$ dimer, HO$_2$ dimer, and the H$_2$O$_2$−HO$_2$ complex. The geometry of these doubly bound complexes are suggested to have a ring-type structure similar to that of the organic acids; however, with a non-planar six-membered ring. In CCl$_4$ solution, (t-BuOOH)$_2$ has been detected with the same suggested doubly bound cyclic structure and an equilibrium constant of $K = 1.9$. Organic hydroperoxides are known to be unstable and even explosive under ambient conditions and therefore warrant concerns when handled. t-BuOOH is a somewhat stable organic hydroperoxide, which makes it well-suited for experimental studies. It has been used as a model compound...
for the organic hydroperoxide functionality in studies of properties such as the OH-stretching overtone spectroscopy, OH-stretch coupling to the COOH torsion and photodissociation of the OO-bond, with various gas phase infrared (IR) and ultra violet-visible spectroscopic techniques as well as with theoretical simulations. 2–38

In this study, we detect the t-BuOOH dimer (t-BuOOH)2 in the gas phase at room temperature. To the best of our knowledge, this is the first gas phase detection of an organic hydroperoxide dimer at room temperature. The low vapor pressure of t-BuOOH (~5 Torr) present an experimental challenge, as the formation of dimer scales with its formation constant and the monomer pressure squared. The absorbance band associated with the hydrogen bound OH-stretching fundamental transition in the dimer is assigned and quantified. We estimate the constant of dimer formation, K, by an approach that combines spectroscopic measurements and a calculated oscillator strength of the associated OH-stretching band.23 We compare the results to that previously reported for (t-BuOOH)2 in CCl4 solution, the singly bound t-BuOOH-DME complex and acetic acid dimer and complex to elucidate the effects of the number of hydrogen bonds as well as the functional groups involved in the bonding.9,12–22,39 Additionally, the weak interactions between the two t-BuOOH units in the dimer are illustrated by a non-covalent interaction (NCI) analysis.30–43

EXPERIMENTAL SECTION

The compounds t-BuOOH in water (70 wt %), t-BuOOH in decane (5.0–6.0 M), t-BuOH (anhydrous, ≥99.5%), DCM (anhydrous, ≥99.8%), MgSO4 (anhydrous, ≥99.5%), and molecular sieves (3 Å) were purchased from Sigma-Aldrich. Deuterium oxide was purchased from Eurisotop. The water -BuOOH sample was extracted into DCM by a liquid–liquid phase extraction. The DCM phase was then dried by adding MgSO4. To make the partially deuterated sample, the water solvated t-BuOOH sample was mixed with deuterium oxide in volume ratio 1:2 by stirring for 2 h and the DCM phase extraction was performed afterward. All samples were kept in sample holders sealed by PRODURAN Teflon stoppers. All samples, except for t-BuOH, which was semi-solid at the working temperatures, were ensured dry by adding activated 3 Å molecular sieves to the sample holders. The samples were connected via Swagelok UltraTorr fittings to a J. Young vacuum line with a background pressure of 10-4 Torr and were degassed repeatedly by freeze-pump-thaw-cycles until no bubbles were observed upon thawing.

The sample gas was introduced directly via a flexible metal tube into a 1 m optical pathlength cell (Tornado Series TS, Specac White-cell). The cell was fitted with CaF2 windows and Au-coated internal and Al external mirrors and was placed in a Fourier transform IR (FTIR) (Bruker Vertex 80) spectrometer. The vacuum system and cell was flushed with D2O before conducting the deuterium experiments to limit the rapid H/D exchange with trace amounts of H2O. The cell compartment was continuously purged with N2 during measurements to limit absorption from ambient H2O and CO2. The sample holders were covered with duct tape and the glass vacuum line and sample cells were covered in black plastic at all times to reduce photo-degradation of t-BuOOH. The pressure was measured in 10 s intervals by a diaphragm pressure gauge (Agilent, CDG500—10 Torr) attached directly to the cell. From this measurement, the monomer pressure was obtained by subtracting the estimated partial pressures of the solvent and impurities (vide infra). The temperature around the sample cells was kept at 298.2 ± 0.2 K during the recording of the spectra.

All spectra were recorded with a KBr beam splitter, a liquid nitrogen cooled HgCdTe (LN-MCT) detector with scanning velocity of 80 kHz and were averaged over 2000 scans with a 1 cm-1 resolution. We used a near IR (NIR) light source with a 3 mm aperture. This light source/beamsplitter/detector combination gave the highest S/N ratio for the OH-stretch region and the higher wavenumber region of the DCM reference band facilitating its subtraction (vide infra).

A low pressure reference spectrum of the t-BuOOH monomer was recorded with a longer optical pathlength cell (16 PA, IR Analysis, Inc. White-cell). The cell had a measured optical pathlength of 15 m and was fitted with KBr windows and Au-coated internal and Al external mirrors. The low sample pressure (~0.3 Torr) ensured minimal dimer formation in the monomer reference spectrum. The reference spectrum was corrected for DCM and t-BuOH impurities.

At equilibrium, the unitless constant of dimer formation can be expressed by

\[
K = \frac{p_{\text{dim}}}{p_{\text{mon}}} \tag{1}
\]

where \(K \) is the constant of dimer formation, \(p_{\text{dim}} \) is the dimer pressure, \(p_{\text{mon}} \) is the monomer pressure, and \(p^* \) is the standard pressure of 1 bar (750 Torr). To estimate the dimer pressure in the gas mixture we use an experimental and theoretical hybrid technique, which has been described previously.9,44 We integrate the absorbance of the observed band associated with the OH-stretch and relate this to a calculated oscillator strength of the transition, \(f_{\text{calc}} \), to determine the dimer pressure

\[
p_{\text{dim}} = 2.6935 \times 10^{-9} \frac{\text{Torr m cm}}{K} \frac{T}{f_{\text{calc}}} \int A(\tilde{\nu}) d\tilde{\nu} \tag{2}
\]

where \(l \) is the pathlength in units of m, \(T \) is the temperature, and \(A(\tilde{\nu}) \) is the wavenumber-dependent base 10 absorbance.

The dimer pressure is usually hard to obtain directly by experiments as it is insignificant compared to the total pressure of the gas mixture.9 The hybrid method described has proven efficient at quantifying very small dimer pressures provided a unique absorption band can be detected. The technique takes advantage of the redshift and intensity enhancement of the OH-stretching band, which typically occurs upon hydrogen bonding.9–11,45,46

Matrix isolation experiments were performed to identify complex formation and aid the assignment of the weak (t-BuOOH)2 gas phase signal. The t-BuOOH sample was diluted 1:1750 in Ar and deposited on a CsI window at 12 K. A total of 11.7 mmol was deposited at a rate of 0.112 mmol/min. Spectra were recorded at 0.5 cm-1 resolution with a FTIR spectrometer (Bruker Vertex 70) with a MIR light source using a 3.0 mm aperture, a CaF2 beamsplitter and a LN-MCT detector with a scanning velocity of 80 kHz. The bandwidth was restricted to 5266 cm-1 and a 20 kHz acquisition filter with a low-pass cutoff at 3950 cm-1 was used. Spectra were averaged over 2000 scans at 12 K. The matrix was annealed by raising the temperature to 20, 25, and 30 K for 10 min each and finally 30 K again for 20 min, with a spectrum recorded after each annealing cycle. This allowed for diffusion of the
molecules within the Ar matrix promoting further cluster formation as well as relaxation of meta-stable matrix sites.47-49

COMPUTATIONAL DETAILS

Electronic structure calculations were performed with density functional theory (DFT) functionals B3LYP,50 M06-2X,51 PBE0,52,53 and CAM-B3LYP54 including the Grimme D3 empirical dispersion,55 and \(\omega \text{B97X-D} \),56 which includes the Grimme D2 empirical dispersion. All DFT calculations were performed with Gaussian 16 using the aug-cc-pVTZ (AVTZ) basis set57-60 and the “verytight” convergence criteria and the “ultrafine” integration grid.61 A normal mode harmonic oscillator frequency calculation (NM HO) of the optimized geometries ensured convergence to a minimum. Finally, CCSD(T)-F12a/cc-pVDZ-F12 single-point energy calculations were performed on the \(\omega \text{B97X-D}/ \text{AVTZ} \) optimized geometries using Molpro12.1.62-65

A manual conformer search for alternative (t-BuOOH)\(_2\) structures was performed by varying the starting structure angles, dihedral angles, and number of hydrogen bonds and optimizing all generated structures at the \(\omega \text{B97X-D}/ \text{AVTZ} \) level of theory with the default optimization criteria in Gaussian 16. If a new conformer was found, it was reoptimized with the “verytight” convergence criteria and a NM HO calculation was performed.

The NCIs of the lowest energy optimized (t-BuOOH)\(_2\) structure was analyzed using NCIPlot4.0 software.66 The programme is used to calculate and visualize the reduced density gradient \(\nabla \rho \) = 0.5 a.u. isosurfaces41-43 where \(\rho \) is a spatial coordinate. The surfaces are constructed from the CCSD(T)-F12a/cc-pVDZ-F12/\(\omega \text{B97X-D}/ \text{AVTZ} \) wave function using the “ultrafine” keyword for integration. The isosurfaces are color coded for the range \(-0.015 \text{ a.u.} < \text{sign}(\lambda_2)\rho(r) < 0.015 \text{ a.u.} \) where \(\lambda_2 \) is the second eigenvalue of the electron density Hessian and \(\rho(r) \) is the electron density.

The frequency and oscillator strength of the OH-stretching transition were calculated with a one-dimensional local mode model (1D LM) programmed in Python 3.56 The potential energy surface (PES) was sampled along the OH bond displacement coordinate: \(q = [-0.45; 1.475 \text{ Å}] \) in 0.025 Å increments from the \(\omega \text{B97X-D}/ \text{AVTZ} \) equilibrium geometry. The points were interpolated to \(\Delta q = 0.00002 \text{ Å} \) using a cubic spline to ensure convergence within the used Simpson’s integration method. The vibrational Schrödinger equation was solved in a basis of the first 50 associated Legendre \(m = 1 \) polynomials. The Cartesian components of the dipole moment function were sampled and interpolated in the same way along the coordinate \(q \).

The unitless oscillator strength was calculated as:

\[
\tilde{f} = 4.702 \times 10^{-6} \text{ cm}^{-1} \frac{\tilde{\nu}_{10}}{D^2} \tilde{\mu}_{10}^2 |q_{10}|^2
\]

where \(\tilde{\nu}_{10} \) is the transition wavenumber in cm\(^{-1}\) and \(\tilde{\mu}_{10} \) the transition dipole moment in Debye (1D = 3.33564 \times 10^{-30} \text{ C·m}). The oscillator strength can be converted to units of km/mol by the multiplication factor 5.3313 \times 10^{9} \text{ km/mol}.

The coupling between the two OH-stretching oscillators in (t-BuOOH)\(_2\) was estimated using a two-dimensional (2D) harmonically coupled anharmonic oscillator LM (HCAO LM) model.69,70,71 The 2D PES was sampled along the displacement coordinates of the two chemically equivalent oscillators: \(q_1, q_2 = [-0.075; 0.075 \text{ Å}] \) in 0.025 Å increments around the \(\omega \text{B97X-D}/ \text{AVTZ} \) equilibrium geometry. The force constants were determined by fitting the 7 \times 7 PES grid to a 2D polynomial to the sixth order. The harmonic coupling was then estimated from the second-order force constants by:

\[
f_{ij} = \frac{1}{2} \frac{F_{ij}}{\sqrt{F_{11} F_{22}}} \omega
\]

where \(f \) is the coupling parameter, \(F_{ij} \) is the second-order derivative of the PES with respect to the displacement coordinates, \(\omega = \sqrt{\frac{F_{11}}{\mu_{\text{OH}}}} \) is the harmonic transition wavenumber of the OH-stretch, and \(\mu_{\text{OH}} \) is the reduced mass of the oscillator.

RESULTS AND DISCUSSION

Matrix Isolation FTIR Spectroscopy. Initially, we use matrix isolation FTIR spectra of t-BuOOH deposited in an Ar matrix to detect the formation of its clusters. Cold experiments give the optimal conditions for cluster formation as the entropic penalty of losing three vibrational and three rotational degrees of freedom upon cluster formation is minimized. In the top panel of Figure 1, we show the spectrum of the initial deposited sample. An intense and narrow band from the OH-stretch of (t-BuOOH)\(_2\) monomer is observed at 3579 cm\(^{-1}\). We assign the broader and stronger band at \(\sim 3400 \text{ cm}^{-1} \) to the OH-stretch of (t-BuOOH)\(_2\). A broad tail to lower wave-numbers is assigned as multiple OH-stretching bands of larger t-BuOOH clusters (multimers). In the bottom panel of Figure 1, we show the difference spectra after each annealing cycle with the initial deposit spectrum subtracted. In the difference spectra, the bands associated with (t-BuOOH)\(_2\) and larger clusters increase with each annealing cycle, while those of the monomer becomes increasingly negative as free monomer is
used to form the clusters. Two peaks associated with the dimer are observed to grow with each annealing cycle at 3392 and 3402 cm\(^{-1}\), respectively. The appearance of two peaks is most probable due to the clusters getting trapped in different sites in the matrix with varying stabilization. At 3628 cm\(^{-1}\), the OH-stretching band from trace amounts of t-BuOH present in the sample can be seen. The minor sharp absorbance peaks at higher energies are from trace amounts of water in the sample compartment.

Theoretically, we identify five conformers of \((t\text{-BuOOH})_2\) (Section S16). The lowest energy conformer of \((t\text{-BuOOH})_2\) is shown to the left in Figure 2. The structure has a doubly hydrogen bound six-membered ring in agreement with earlier findings for other hydroperoxide complexes. \(^{23-29,31}\) At the \(\omega B97X-D/AVTZ\) and B3LYP-D3/AVTZ levels of theory, all high-energy conformers have zero point corrected electronic formation energies, \(\Delta E\) (\(\Delta H\) at 0 K), that are 15–20 kJ/mol higher than the most stable conformer found, and Gibbs formation energies, \(\Delta G\), about 9–14 kJ/mol higher at 298 K (Table S6). This makes population of the high-energy conformers highly unlikely both in the matrix and the gas phase room temperature experiments. The difference, \(\Delta H - \Delta G\), between the lowest energy conformer and the four other found conformers, highlights the entropic energy penalty of ca. 5 kJ/mol at 298 K associated with forming the rigid ring in the lowest energy structure. In the cold experiment, we find that formation of \((t\text{-BuOOH})_2\) is favored over that of larger clusters. Thus, in the gas phase at room temperature, clusters larger than the dimer are very unlikely to form. In contrast, alcohols have previously been reported to favor larger clusters.\(^{71-74}\) The matrix isolation spectra show that formation of \((t\text{-BuOOH})_2\) is possible and provides an estimate of the OH-stretching redshift of \(\sim 180\) cm\(^{-1}\).

Gas Phase Spectral Subtraction. In the gas phase, isolation of the \((t\text{-BuOOH})_2\) spectrum relies on accurate spectral subtraction of the t-BuOOH monomer, solvents, and impurities. Quantification of \(K\) relies on determination of the t-BuOOH monomer and dimer pressures. Within the approach we use, the measured integrated absorbance of the OH\(_x\)-stretching band and a calculated oscillator strength of the OH\(_x\)-stretching transition is used to determine the dimer pressure. We assume that the observed band only gains intensity from the OH\(_x\)-stretching transition in \((t\text{-BuOOH})_2\).

Due to its limited stability, t-BuOOH is commercially available only as solutions in decane and water, two solvents that are difficult to quantify and subtract from the measured spectrum of the gas mixture. For water, this is due to its rotational fine-structure, which is sensitive to pressure and temperature changes. For decane, it is due to its broad CH-stretching and HCH-bending bands, which overlap the bands from t-BuOOH. To avoid the challenge of quantifying these solvents in the gas mixture, we exchange the solvent to DCM.

DCM has a very clear and characteristic CH-stretching/HCH-bending combination band with visible rotational fine-structure centered at \(4467\) cm\(^{-1}\) that facilitate accurate spectral subtraction (Figure 3B). In addition, DCM absorbance bands are very weak in the OH-stretching region. The most prevalent impurity in the t-BuOOH sample, apart from the solvent, is its degradation product t-BuOH\(^{75,76}\) with an OH-stretching band at \(3643\) cm\(^{-1}\) (Figure 3C). We record reference spectra of t-BuOH and DCM with known pressures and subtract these reference spectra from the sample mix spectra to estimate their respective partial pressures in the sample. This leaves a spectrum of only t-BuOOH + \((t\text{-BuOOH})_2\) and gives an accurate estimate of the t-BuOOH monomer partial pressure as the partial pressure of the dimer is negligible. The t-BuOOH monomer pressure is corrected for the partial pressure contributions from the solvent and impurities to the total pressure.

In Figure 3, we show the progression from the initial sample spectrum to the final \((t\text{-BuOOH})_2\) spectrum by subtraction of t-BuOOH monomer-, DCM-, and t-BuOH reference spectra, respectively. The amount of t-BuOH and especially DCM that is subtracted varies significantly between the different experiments. The spectrum shown has a measured total sample pressure of 6.51 Torr. Reference spectra of DCM corresponding to 2.83 Torr and t-BuOH corresponding to 0.19 Torr is subtracted. This leaves a determined t-BuOOH monomer pressure of 3.49 Torr. The estimated pressure of \((t\text{-BuOOH})_2\) present in the sample is about 3 orders of magnitude smaller than that of the t-BuOOH monomer and can be ignored in the determination of the monomer pressure. Due to the low partial pressure of \((t\text{-BuOOH})_2\), its associated OH\(_x\)-stretching band is very weak in comparison to the OH-stretch of the t-BuOOH

Figure 2. Calculated lowest energy \(\omega B97X-D/AVTZ\) structures. Left: doubly hydrogen bound \((t\text{-BuOOH})_2\). Right: singly bound t-BuOOH-DME.

Figure 3. In panel A, the spectrum of the original sample is shown. In panel B, the t-BuOOH monomer has been subtracted leaving a spectrum of \((t\text{-BuOOH})_2\) with DCM and t-BuOH impurities. In panel C, we have subtracted DCM, and in panel D, t-BuOH has been subtracted, leaving a spectrum of pure \((t\text{-BuOOH})_2\). In frames A, B, and C, the reference spectrum of the largest impurity is shown with a dashed line underneath the spectrum of the sample gas mix.
monomer. This is noticeable in the change in absorbance-axis from panel A to the other panels. The spectra have been refined by subtracting the reference spectra of ambient water in the cell compartment of the spectrometer. We also correct for a slight ice build-up on the LN-MCT detector (Sections S5 and S6).

In the (t-BuOOH)₂ spectrum (Figure 3D), we observe small residuals from imperfect subtraction of the intense t-BuOOH monomer signal at around 3597 cm⁻¹. Small residual signals from DCM subtraction are also observed at 4467 cm⁻¹ and finally signals from water impurities are observed in the region 3600–3950 cm⁻¹. This is primarily due to differences in pressure-broadening of the sharp rotational-vibrational lines between the spectra of the samples and the references. We also recorded spectra of the decane solvated t-BuOOH sample and obtained a spectrum of (t-BuOOH)₂ with a band profile indistinguishable to that of the DCM solvated sample (Section S11).

Band Shape and Position. In Figure 4, we show the OH⁻ stretching band of (t-BuOOH)₂ measured for different t-

BuOOH monomer pressures. The absorbance band is asymmetric with a full width at half maximum (fwhm) of ~110 cm⁻¹. The intensity-weighted center of the band is 3452 cm⁻¹, which corresponds to an OH-stretching band redshift of 145 cm⁻¹ from the t-BuOOH monomer (Table 1). However, the two OH⁻-stretching modes in (t-BuOOH)₂ couple, leading to an IR-inactive symmetric transition and an IR-active antisymmetric transition, the latter of which gives rise to the observed band. The splitting of the two transitions are calculated to be 35 cm⁻¹ with the HCAO LM model (32 cm⁻¹ with NM HO model) with the antisymmetric transition at the highest energy. A decoupled OH⁻-stretching transition would be located in between the symmetric/antisymmetric transitions or about 18 cm⁻¹ lower than that observed. The coupling between the two modes thus attenuate the observed redshift. In addition, the maximum of the OH⁻-stretching band in hydrogen bound complexes shift to higher wavenumbers as the temperature increases due to coupling and population of the low-frequency intermolecular modes. In methanol dimer, for example, the cold OH⁻-stretching band is located at the onset of the warm OH⁻-stretching band. In general, the OH⁻-stretching band maximum occurs ca. 25 cm⁻¹ lower in cold spectra compared to the corresponding band maximum at room temperature. This is illustrated in a few examples for different hydrogen bond complexes.

To experimentally decouple the two OH⁻-stretching oscillators, we record spectra of a partially deuterated t-BuOOH sample. The sample is deuterated to roughly 50% atom D. Thus, the spectrum will contain a mix of dimers formed with either 0, 1, or 2H replaced by D, roughly in ratio 1:2:1. The formed t-BuOOH·t-BuOOD dimer is observed in both matrix experiments and in gas phase room temperature experiments. In the 12 K matrix isolation difference spectra of the partly deuterated sample (Figure S15), we determine a 17 cm⁻¹ shift of the two observed OH⁻-stretching bands in good agreement with the calculated shift expected from decoupling the two OH⁻-stretching transitions. Due to temperature effects, the observed shift under cold conditions of ca. 17 cm⁻¹ is a more direct measure of the decoupling of the two OH⁻-stretching oscillators. If we include the additional shift of 17 cm⁻¹, the redshift of the isolated OH⁻-stretching band in (t-BuOOH)₂ becomes 162 cm⁻¹, which is comparable to the 170 cm⁻¹ redshift found for t-BuOOH·DME.

In Figure 5, the OH⁻-stretching band position in the gas phase spectrum of (t-BuOOH)₂ is compared to that of the partially deuterated dimer t-BuOOH·t-BuOOD. We subtract the spectrum of the non-deuterated dimer from the spectrum of the mixture to obtain the spectrum of the singly- and doubly deuterated dimers t-BuOOH·t-BuOOD and (t-BuOOD)₂. The latter is expected to have no intensity in the OH-stretching region. We observe an OH⁻-stretching band maximum of t-BuOOH·t-BuOOD at ~3415 cm⁻¹, which is shifted ~37 cm⁻¹ from the intensity weighted maximum of the non-deuterated (t-BuOOH)₂. The 37 cm⁻¹ shift in the gas phase is ca. 20 cm⁻¹ larger than that found in the matrix isolation experiment. We attribute the width and shape of the OH⁻-stretching band of (t-

Table 1. Calculated ωB97X-D/AVTZ Geometric Parameters and Room-Temperature Observed Redshifts

<table>
<thead>
<tr>
<th></th>
<th>θ_{OH-O} [°]</th>
<th>R_{OH-O} [Å]</th>
<th>ΔR_{OH} [Å]</th>
<th>calc Δν</th>
<th>obs Δν^b</th>
<th>obs Δν^c</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-BuOOH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t-BuOOH)₂</td>
<td>154.2</td>
<td>1.90</td>
<td>0.0115</td>
<td>3413</td>
<td>3452</td>
<td>145 (162)</td>
</tr>
<tr>
<td>t-BuOOH-DME^d</td>
<td>168.4</td>
<td>1.81</td>
<td>0.0123</td>
<td>3363</td>
<td>3428</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^aAll Δν are in units of cm⁻¹. ^bBand maximum. Intensity weighted band maximum for (t-BuOOH)₂. ^cCalculated with 1D LM model. ^dValues from Møller et al. includes two conformers. 1D LM model assuming Morse potential from Møller et al. ^eRedshift including the 17 cm⁻¹ shift from decoupling the OH⁻-stretch in the dimer.

https://doi.org/10.1021/acs.jpca.3b03702

6480
of experiments. The determined monomer- and dimer pressures for all measurements are shown in Table S1. The constant of dimer formation for \((t\text{-BuOOH})_2\) is estimated to be \(1.4 \times 10^{-5}\) \((\omega B97X-D/AVTZ)\) and empirically corrected for the effect of the coupling to the intermolecular modes.\(^{81-83}\) The empirical correction comes from a relatively robust discrepancy found between the 1D LM model and a LM perturbation theory model, which includes coupling to the intermolecular modes. The two models were applied to a range of hydrogen bound complexes, for which a reduction in intensity of \(~25\%) was observed when introducing coupling to the intermolecular modes.\(^{81-83}\)

In Figure 6, the estimated pressure of \((t\text{-BuOOH})_2\) is fitted to the square of the \(t\text{-BuOOH}\) monomer pressure for a number of experiments. The determined monomer- and dimer pressures for all measurements are shown in Table S1. The constant of dimer formation for \((t\text{-BuOOH})_2\) is estimated to be \(K = 0.41 \pm 0.017\) following eq 1, with the uncertainty reported as one standard error \((\sigma_{\text{std}})\) including all experimental errors. The statistical \(\chi^2\)-fit uncertainty is 0.0054 and reflects a
very certain quadratic correlation between the integrated absorbance of the OH-stretching band and the monomer pressure as is expected for dimer formation. The quadratic correlation further rules out significant intensity contribution from a t-BuOOH trimer, which would introduce a cubic correlation between the integrated absorbance and the pressure as is expected for dimer formation. The quadratic correlation further rules out significant intensity contribution to electronic structure method used in the purely theoretical approximations. The difference between the functionals within the harmonic oscillator and rigid rotor approximations. The difference between the functionals used in the purely theoretical approach (Table S10). In comparison, the calculated 1D LM oscillator strength of the OH-stretch, and by extension ΔK, varies less than 20% between the ωB97X-D and the B3LYP-D3 methods (Section S12). This insensitivity of fcalc to electronic structure method is in agreement with results for other hydrogen bound complexes. For example, the fcalc of the OH-stretch varies less than 10% between the ωB97X-D and CCSD(T)-F12a methods for the MeOH-DMA complex. Thus, K determined with this hybrid method is relatively insensitive to the choice of the electronic structure method.

In Table 2, we compare K for various hydrogen bound complexes and dimers. The experimentally determined constant of dimer formation and corresponding ΔG value at 298 K for t-BuOOH-DME is 0.17 and 4.4 kJ/mol, respectively. (t-BuOOH)2 thus has an increased stabilization of ca. 2.2 kJ/mol at 298 K compared to t-BuOOH-DME. The modest increase in stabilization was surprising, as we expected the binding-enthalpy from forming an additional hydrogen bond to shift the ΔG value significantly. This phenomenon is observed for carboxylic acids, where constants of dimer formation of the doubly bound dimers are orders of magnitude larger than that of the singly bound complexes. For acetic acid, the constants of dimer formation of the singly hydrogen bound complexes with methanol and ethanol were experimentally estimated to K ~ 1.17 The fluorinated version, trifluoroacetic acid, also forms complexes with various ketones with K < 1.18 However, upon forming two hydrogen bonds in an eight-membered ring in an acetic acid dimer, theoretical studies report K ~ 30–86017 and 1R-, NMR-, and vapor density experiments estimate values in the order of K ~ 1000–2000.19–21 For formic acid with a similar eight-membered ring, K is estimated from theory and experiments in the order of ~300.12–16 In (t-BuOOH)2, the
weakening of the individual hydrogen bonds, as well as an additional entropic energy penalty from forming a rigid ring, results in the modest additional stabilization of ca. 2.2 kJ/mol at room temperature. Previously, \(K \) has been determined for \((t\text{-BuOOH})_2\) and \((t\text{-BuOOH})_2 \) in \(\text{CCl}_4 \) solution to be 1.90 and 1.65, respectively.\(^{30}\) These values are significantly higher than the gas-phase value presented here. In the \(\text{CCl}_4 \) experiment, the reported \(K \) is lower for the deuterated dimer, which is opposing the common trend of deuterated species forming stronger bound complexes.\(^{85}\)

In Figure 7, we show the NCI analysis of the intermolecular electron densities and the reduced electron density gradients. To the left is shown the spatial analysis illustrated as \(s(r) = 0.5 \) a.u. isosurfaces and to the right the \(s(r) \) is plotted versus \(\text{sign}(\lambda_z r) / \rho(r) \). The isosurfaces to the left are on a color gradient from strong attractive (blue) to weak secondary (green) to strong repulsive interactions (red). The hydrogen bonds are clearly visible as two deep blue-colored circular surfaces located close to the hydrogen atoms of each OOH group. In the 2D plot to the right, the \(s(r) \) minima corresponding to the hydrogen bonds are located at \(\text{sign}(\lambda_z r) / \rho(r) = -0.0265 \) a.u. and \(-0.0313 \) a.u. for \((t\text{-BuOOH})_2\) and \(t\text{-BuOOH} \cdot \text{DME}, \) respectively, signifying weaker individual hydrogen bonds in \((t\text{-BuOOH})_2\). An additional interaction in \((t\text{-BuOOH})_2\), which is not present in the \(t\text{-BuOOH} \cdot \text{DME}, \) is the repulsive interaction in the middle of the ring. This is seen as a red-brown isosurface in the center of \((t\text{-BuOOH})_2\) and corresponds to the \(s(r) \) extremum at \(\text{sign}(\lambda_z r) / \rho(r) = 0.0093 \) a.u. in the 2D plot.

CONCLUSIONS

We have detected \((t\text{-BuOOH})_2\) in the gas phase at room temperature from its fundamental OH\(_2\)-stretching band. The band profile is wide and asymmetric with an intensity weighted maximum at 3452 cm\(^{-1}\). We decoupled the two OH-stretching oscillators by partially deuterating the dimer. This facilitated direct comparison with the redshift of the singly bound \(t\text{-BuOOH} \cdot \text{DME} \) complex which was found to be similar to that of \((t\text{-BuOOH})_2\). The matrix isolation spectrum of \(t\text{-BuOOH} \cdot t\text{-BuOOH} \) dimer provided an estimate of the HCAO LM coupling parameter, \(\gamma' \), of 17 cm\(^{-1}\) between the two OH\(_2\)-stretching vibrations. The calculated lowest energy structure of the dimer is a closed 6-membered ring structure, which imposes non-optimal angles for the hydrogen bonds. Other conformers were found energetically unfavorable and were not detected at room temperature. The constant of dimer formation is determined to be \(\sim 0.4 \), which is roughly twice that found for the singly bound \(t\text{-BuOOH} \cdot \text{DME} \) complex. This rough factor two increase from a singly to a doubly hydrogen bound complex is significantly smaller than that found for carboxylic acids.

ASSOCIATED CONTENT

 Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpca.3c03702.

Protocol of the \(t\text{-BuOOH} \) sample phase extracted from \(\text{H}_2\text{O} \) into DCM; H-NMR and C-NMR spectra of finished samples confirming purity and estimating residual DCM and \(\text{H}_2\text{O} \) content; measured and estimated pressures of all experiments; spectral refinement by subtracting water vapor- and ice signals from the spectra; details on baseline corrections and integration limits; estimation of experimental errors and procedure of propagation of error; data treatment of commercially available \(t\text{-BuOOH} \) solvated in decane; oscillator strengths and transition wavenumbers calculated with different models for \((t\text{-BuOOH})_2\); deuteration of \((t\text{-BuOOH})_2\) sample is shown and the 12 K matrix spectra of the partly deuterated sample; integrated kinetic energy densities \(G(s_{0,0}) \) of the NCI analyses; alternative conformers found and thermodynamic properties; Mulliken charge distributions in \((t\text{-BuOOH})_2\) monomer, dimer, and the \(t\text{-BuOOH} \cdot \text{DME} \) complex; and calculated thermodynamic properties for the most stable conformer are reported with different DFT functionals (PDF).
The Journal of Physical Chemistry A

Comparison of Hydroperoxide and Corresponding Alcohol as Molecules in Dihydroperoxyl (HO₂O₂)

The Journal of Physical Chemistry A

